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Abstract-An integral method based on moment techniques and especially useful for compressible 
laminar flows is presented. The describing partial differential equations are first transformed to the 
Levy-Lees variables and then converted to integral conditions with ~)m as a weighing factor. A 
technique for handling the variation in transport properties which explicitly arises for m > 0 is 
described. The resultant equations are applied for m = 0, 1 with the commonly employed fourth and 
fifth degree polynomial profiles for velocity and stagnation enthalpy. The distinct classification of 
similar and nonsimilar flows within the same analytic framework is emphasized. The analysis is 
applied to a variety of flows for which more accurate results are available and is found to yield satis- 
factory results in most cases. Therefore, the present method is considered to improve somewhat the 

conventional integral method (m = 0) without excessive labor. 

NOMENCLATURE 

velocity profile parameter; 
square matrix elements [see equation 
(34)l; 
energy profile parameters; 
column matrix elements [see equation 
(34)l; 
skin friction coefficient; 
mass-density viscosity ratio, pp/pepe; 
mean value of C [see equations (4)- 
(6)1 ; 
= c/u; 
mean value of z( [see equations (16)- 
(WI; 
= C(1 - a-l); 
= mean value of C [see equations (20)- 
(22)1 ; 
transformed stream function; 

t The research reported herein was sponsored by the 
Air Force Office of Scientific Research under Grant 
No. AF-AFOSR-I-63. The method described here was 
presented by the first author in a graduate course at the 
Polytechnic Institute of Brooklyn in the spring of the 
1961-62 academic year. 

1 Formerly Professor of Aerospace Engineering; now 
Professor of Aerospace Engineering, University of 
California, San Diego, La Jolla, California. 

Q Formerly Research Associate; now Assistant Pro- 
fessor of Aerospace Engineering, New York University. 

streamwise velocity ratio, (u/uJ; 
stagnation enthalpy ratio, h,/hs, e; 
shear parameter; 
enthalpy ; 
various integrals of profiles, [see Appen- 
dix] ; 
= 0, 1 for two-dimensional or axi- 
symmetric flow respectively; 
exponent of weight function ; 
= (z&&e) ; 
Mach number; 
pressure ; 
heat transfer ; 
cylindrical radius; 
transformed streamwise variable; 
normalized streamwise variable for 
blunt body problem; 
streamwise velocity; 
coordinate in streamwise direction; 
coordinate normal to streamwise 
direction; 
pressure gradient parameter; 
constant of proportionality, ii = p_T, 
for blunt body problem; 
boundary-layer thickness; 
boundary-layer displacement thickness; 
transformed normal coordinate; 
= T&e; 

1451 



1452 PAUL A. LIBBY and HERBERT FOX 

boundary-layer momentum thickness; 
viscosity; 
mass density; 
Prandtl number, (p&/k) ; 
skin friction. 

Subscripts 

e, external condition; 

;, 
initial conditions; 
reference conditions; 

s, e, external stagnation conditions; 
J, differentiation with respect to S, (a/G); 
M’, wall conditions; 

‘I? differentiation with respect to 7, (a/37); 

a, conditions far from the body. 

Superscript 

0’ differentiation with respect to f, (a/as). 

I. INTRODUCTION 

PROBLEMS in the theory of laminar boundary 
layers continue to occupy the attention of fluid 
mechanicians in a wide variety of fields. Conse- 
quently, there exists a broad literature providing 
various methods of solution of such problems. 
The greatest advances in the theory in recent 
years have been connected with so-called similar 
flows which are described by ordinary differ- 
ential equations involving as a new independent 
variable a combination of dependent and inde- 
pendent variables (cf. e.g. [l-5]). However, 
many applied problems involve either combina- 
tions of wall and external flow conditions and of 
initial distributions of flow variables incom- 
patible with similarity restrictions or homo- 
geneous chemical reactions with finite rates. 
Thus there is continuing interest in nonsimilar 
flows, which are amenable to treatment by a 
spectrum of methods from exact numerical 
procedures to conventional integral methods. 
With respect to the former procedures, references 
6-8 are representative of the present status 
thereof. 

The integral methods, although widely used, 
have been criticized on at least two counts when 
applied to flows of interest in aeronautics and 
astronautics. It is objected that as a result of the 
averaging over the boundary-layer region, the 
only transport properties remaining are those at 

the wall; in flows involving large density gradi- 
ents correspondingly large changes in viscosity, 
conductivity and diffusivity occur in the 
boundary layer and are not accounted for in the 
usual integral method. The second objection 
pertains to the difficulty in systematically im- 
proving solutions so that there can be estab- 
lished some measure of the accuracy of the 
approximation being employed. Although such 
improvements are in principle possible in many 
integral methods, the complexity of doing so 
usually precludes such evaluations. In this 
connection the strip method of Pallone [9, IO] 
must be mentioned since it might be considered 
intermediate between the exact numerical pro- 
cedures, which it approaches when the number 
of strips become large, and the conventional 
integral method, which it reduces to when only 
one strip is employed; accordingly, it largely 
overcomes the aforementioned objections to the 
integral method. 

It is the purpose of this report to present an 
integral method based on the method of mo- 
ments; it also meets the objections cited above 
and may thus be considered an alternative to the 
strip method although perhaps more closely akin 
to the conventional integral method; i.e. in the 
spectrum of approximate methods it should be 
considered near the more approximate, more 
simple end. 

Moment methods have been employed in the 
past in connection with approximate solutions to 
boundary-layer problems (cf. e.g. [l I-161) but 
principally to constant density flows. With 
respect to compressible flows the transformation 
of the equations according to the Howarth- 
Dorodnitzn technique requires that the velocity 
ratio (u/uJ be used as a weighing factor in the 
moment method. This complicates the evalua- 
tion of the integrals arising in the various 
moment conditions and increases the complexity 
of taking higher m0ments.t Following [5] and 
[17], the boundary-layer equations are here first 
transformed to the Levy-Lees variables S, 7. 
Moment conditions are then imposed with rjfn 
taken as a weighing factor; accordingly, the 

t The first author is indebted to Mr. Clark H. Lewis of 
ARO, Inc., Tullahoma, Tennessee, for an informative 
discussion of the difficulties of moment methods in 
compressible flows. 
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possibility of adding additional moment con- 
ditions is enhanced. An additional advantage of 
this approach is that it leads to a clear characteri- 
zation of similar and nonsimilar flows. 

This report is organized as follows : the general 
analysis leading to sets of moment conditions is 
presented first; a particular pair of profiles, one 
for the velocity and one for the stagnation 
enthalpy is then assumed so that the implications 
of the resulting set of equations can be discussed. 
Finally, several applications of the analysis em- 
ploying these profiles are compared with the 
results of more accurate calculations. 

The particular profiles employed here are of 
the well-known polynomial form although the 
general analysis can be applied to other types of 
profile representations. As in most integral 
methods involving polynomial profiles, there 
arise in the present work limitations of the 
method related to essential singularities in the 
final system of equations; thus, for flows with 
accelerating pressure gradients there is a maxi- 
mum value of g, beyond which the solutions 
cannot be carried to arbitrary downstream 
distances and for flows with suction the extent 
and magnitude of the mass transfer is restricted. 
Accordingly, the main interest of the present 
work is considered to be the general analysis 
including the treatment of transport property 
effects and of similar and nonsimilar flows 
within the same analytic framework. 

The authors are pleased to acknowledge the 
assistance of Mr. Victor Monteleon and Mr. Jan 
Raat in evaluating the integrals appearing here, 
and of Miss Faiza Nabi in writing the computer 
program. Dr. Raymond Edelman participated 
in interesting discussions of the method presented 
here. 

II. ANALYSIS 

Consider first the streamwise momentum 
equation in terms of the modified stream 
function f(S, 7) with the Levy-Lees variable 
S, r] [5]; it is 

(Cf,,), +J& + B KPelP) -_f,“l 
= 2 L7 (fir.fTls -fsfvJ (1) 

For the present analysis the boundary conditions 
applicable for all S are taken to be 

H.M.4T 

No detailed specification of initial conditions 
applicable either at S = 0 or at S = & > 0 will 
be listed at this juncture; however, the usual 
restrictions relative to solutions valid as S -+ 0 
will be considered acceptable. The transport 
parameter C is considered here a given function 
of the dependent variables, e.g. off $ and g and 
fl is considered a given function of S. 

Integral conditions 
To obtain an approximate solution to equa- 

tions (1) and (2) introduce a finite “edge” 
7 = ve = qe(s> at which f 1 = f && ?e) 21 1 and 
obtain a series of integral conditions by multi- 
plying equation (1) by qm dv and by integrating 
termwise from 0 to qe. There will result from this 
procedure a system of ordinary differential 
equations which must be integrated numerically. 
It should be noted that in formulating the 
integral conditions it will be assumed that a 

velocity profile in the form f I =i!lat(.F)F&j) 

where 75 = T/Q is anticipated so that derivatives 
of the type (f,)-, will appear and will be con- 
veniently retamed in this form. The Fe(f) 
functions will be compatible at least with the 
boundary conditions of equation (2). 

The first term on the left-hand side of equa- 
tion (1) becomes 

17” KS,,), d7 = - [C (fJJw = 

- GU Kf,> ilwlrle, m = 0 

= _ m7]r-1 d V-l C (f,,); djj, m b 1 (3) 

It will be noted that for m > 1 the influence of 
the transport properties throughout the bound- 
ary layer is present. In anticipation of the 
numerical analysis related to the integrals 
involving C, it will be convenient to introduce a 
mean value of C, denoted CO, m and varying with 
S and to consider the remainder to be a function 
of S and 7, known from a previous step in the 
integration of the ordinary differential equations. 
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In particular let The right-hand side of equation (1) becomes 

C (S, 7) = [C (& 17) - Co, m ($1 + co, m (S) (4) V, 

Then equation (3) for m 2 1 becomes 2s 
s 

P (.f~.fk -.fif,,> drl 
0 

i'p (Cf,,),h = - m q7-l CO,~ [1 - Cm 
= 2s?$ 

- 1) ; ?jm-s& dq + j. qm-1 (C 

{cg) i(m + l)j+jmYtdq 

- Cop7n) Co,;& (f,); &I (5) -- j-&d?] + rle [$ i (?:f; -f,))di] 

Now select CO,~ so that the second integral is 0 0 

zero, i.e. let 
1 
C ijm-l C U-J; d75 

so that finally 0 0 

where it has been found more convenient to 
introduce explicitly fs at 7 = Te.t ?s”Y (Cf,,), dq = - m q;-l CO,VL [l - (m 

0 

- 1) iq”-“f, d?j], m > 1 
0 

(7) 

The remaining terms on the left-hand side of 
equation (1) offer no difficulty; they become 

%‘PY& dq = rlWe - rle a+??-; d? 

- m ) +jrn-lfSv dij] (8) 

The functik f(S, 7) will be computed from the 
profilef, from the equation 

and the function fe(S) from 

.fe -fzc! + me b-r, drj (10) 

/+PKP~/P~ -f;l d? = P$+' [i+j- (P~/P) d.4 
0 

- aii-f; 61 (11) 

In cases in which pe/p is simply related to the 
stagnation enthalpy and velocity the integral 
involving the density can be handled analytically; 
in more complicated cases this integral requires 
numerical treatment. 

Equations (3) and (7)-(12) and the definition 
of CO, m given by equation (6) provide as many 
integral conditions for the velocity profile as is 
desired by letting m = 0, 1, 2 . . . . 

The energy equation and its integral conditions 
Consider next the equation of energy con- 

servation; it will be sufficient for the purposes of 
illustrating the method and for many problems 
in boundary-layer theory to assume that either 
a homogeneous or a gas mixture with all Lewis 
numbers equal to unity exists in the boundary 
layer. In either case the energy equation for at 
flow with constant stagnation enthalpy external 
to the boundary layer is, in terms of the Levy- 
Lees variables, 

KC/~) &,I,, i-m,] + 2 * [C (1 - a-9 f,, .f 7,Jlq 
=z 2S(f,Js -"fig,) (13) 

_ 
t Note that 
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Let the boundary conditions applicable at any 
s‘ be 

g(& 0) = &&) 
g(S, co) = 1 > 

(14) 

Again the initial conditions at either S = 0 or at 
9 = & > 0 will be discussed later. The Prandtl 
number u as well as the transport parameter C 
are assumed to be given functions of the de- 
pendent variables and ZI a~ (~:/2&,~) to be a 
given function of S. 

In applying a method of moments to obtain an 
approximate solution of equations (13) and (14) 
it will be assumed here that D = O(1) and thus 
that the “edge” of the energy boundary layer 
corresponds roughly to the same value of T as 
does the edge of the momentum boundary layer. 
Thus a single thickness can be introduced and 
the method of moments involves multiplying 
equation (13) by em dv and integrating from 
0 to Q. The first term on the left-hand side of 
equation (13) leads to 

I’ve I(G’~) g,], d9 1 

= - E&J&e, 7.v = 0 (15) 

=- m @-1 i qm-1 cg; d$ m > 1 
~ 

where c = C/U. Now the effect of the variation 
of C and of u throughout the boundary layer 
can be taken into account as was the effect of C 
in the momentum equation; let 

c ($7 rl) = Ic ($7 9) - c’o, ,&)I + co, m(i) (16) 

so that equations (15) for m 2 I becomes 

i’l- [(C/V g,l, d? 

= - 261 (1 - gw), M = 1 

= -mrlpZ(O,m[l 

-(m - l)iijm-rgd?j], m > 1 
0 

I 

i 

t 

(17) 

provided CO, 7n is selected so that 

j &;jd+i 
G, 1 = O @-E-&g,)’ *=I 

and 

co, m = 

i <m-r cg i d+j 

1 -(m - l+jm-egd+ 
, m>l 

0 

(18) 

As above, the point of view with respect to 
co, m. given by equation (18) is that in the 
numerical integration of the ordinary differential 
equations, which result from the method of 
moments, its value is determined in general by 
numerical integration at the previous value of S. 

The second term on the right-hand side of 
equation (13) leads to 

leqrn fg, dy = 77: [Ye - Te d +j” f 1/ g di 

- m 5 fjrn-l gfd+j], (19) 

f and fe being given by eiuations (9) and (10); 
the third term leads to 

=--- 23 m 7jr-r i fin-r C (1 

- o-r) fV (f,) i dlj (20) 

As above define 

C z C - i” = [c(j, q) - CO, m(i)] + CO, m(s”); 

then equation (20) yieIds 

2riry7m [C(l - 
0 0-l) f li f & dr = 

- 2fi m ?jr-r CO, m (1 - [(m - 1)/Z] 

i jjm-af; dij) (21) 

provided 

J! qm-1 cf ," dij 
Co,m=l---O 

2 - (m - 1) 3 sjm-zf; d$ 
0 

(22) 

Finally the right-hand side of equation (13) 
becomes 
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1 

-/- Ile & 
[J 

+ (;)c, f,k- I)d71 
1 

0 
w 

w - 1)) , m=O 

1 

(23) 
Thus equations (15) for m = 0, and equations 

(17), (19), (21) and (23) with the pertinent 
definitions of es, m and cc, m given by equations 
(18) and (22) provide the set of equations repre- 
senting integral conditions for the energy 
equation. 

equations 
It should be clear from the presentation above 

that the method of moments employed here can 
be applied straightforwardly to heterogeneous 
boundary layers involving all Lewis numbers 
equal to unity. Indeed except for alterations in 
boundary conditions and for the creation term, 
the equations of species conservation in terms of 
mass fractions can be handled much as the 
energy equation above. For boundary layers 
with multicomponent and thermal diffusion 
considered, the diffusional velocities are not 
related in a simple fashion to the gradients of 
concentration and temperature. However, the 
determination of effective, average transport 
coefficients as above would appear to provide a 

useful numerical technique for including these 
effects in an approximate solution of the energy 
and species conservation equations. 

The remainder of the analysis presented here 
will be confined to homogeneous boundary 
layers so that the momentum and energy equa- 
tions supplemented by an equation of state and 
by a description of the transport properties in 
terms of g and f, provide a satisfactory descrip- 
tion of the flow. 

To exploit the integral conditions developed 
above for the momentum and energy equations 
it is necessary to assume profiles forfii and g with 
a finite edge at 7 -= ye, ;j 1:~ 1; polynomials 
provide convenient functions therefor, although 
they lead to certain restrictions in application. 
Because of the availability of an in~nite number 
of moment conditions a wide variety of profiles 
can be selected. These profiles can involve as 
many arbitrary functions of s’ and can satisfy as 
many boundary conditions at 75 = 0, 1 as 
desired; thus a means for successive improve- 
ments of the integral method with a simple 
weighing function is available. 

For the purposes of illustrating the method 
the profiles employed here will be 

f, = (2+j -- 2?j3 -+ ;i*) - (a2/3) 

(r;; - 37j2 i; y3 - ij4) (24) 

g = 1 - (1 - g,)( I - lO?j~ + iS?j~ - 6;i5) 

+ bl (fj - 6ij3 f 8fj4 - 37j5) 

+ b2 (fj2 - 3753 + 3114 - +j5) (25) 

where ~2, bl and ba are profile parameters which 
are unknown functions of S. The wall enthalpy 
parameter gW is assumed to be a given function 
of S. Examination of the +j-functions in these 
profiles indicates that the boundary conditions 
given by equations (2) and (14) are satisfied for 
all values of these parameters. Note that the 
velocity profile is the usual one parameter profile 
for flows with pressure gradient; here, there is 
followed the point of view suggested by Tani 
[14] and others, namely, that the parameter a2 
be determined not by a boundary condition at 
$ = 0 but rather by an integral condition. 
Similarly, the parameter bz will not be de- 
termined here by a boundary condition but by 
an integral condition. It is noted that by adding 
one additional profile parameter to each profile 
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the usual boundary conditions at ;i = 0 on 
both profiles could be satisfied without increas- 
ing the number of profile parameters which are 
determined by integral conditions. 

With the profiles given by equations (24) and 
(25) the boundary-layer characteristics are 
known in terms of S and 7 when qe, az, 61 and bz 
are obtained as functions of s”. Thus, four in- 
tegral conditions given by m = 0, 1 for both the 
momentum and energy equations are required. 

It is convenient to consider now the quantities, 
which are of practical interest in the solution of a 
particular problem, and which may, for the 
specific profiles employed here, be expressed in 
terms of Q and of the profile parameters; for 
example, the skin friction coefficient is 

The heat transfer in the form of a Stanton 
number can be expressed as 

4w c w P& (Me) 
Pa K&8, e(1 z &flu) = into (23* (1 - gw) 

(27) 

The boundary-layer characteristics which can 
be found explicitly by application of the inverse 
transformation, 7j 3 y, are 

In addition to the profiles presented above it 
is necessary, in order to complete the system of 
equations, to provide the auxiliary functions 
related to the transport processes and to the mass 
density ratio, pe/p. It will be sufficient for 
purposes of illustrating the method and for 
many boundary-layer problems to take an 
approximate equation of state in the form 

to let the Prandtl number be constant, and to let 

C = (h/he)” (32) 

where n is a constant. In terms off, and g the 
static enthalpy ratio is readily expressed as 

h-g--f: 
he l-P% (33) 

A particular boundary-layer flow is character- 
ized by either the distributions of or the values of 
/3, 6, fw and gw depending on whether the flow 
is respectively nonsimilar or similar. For either 
type of flow these flow parameters must be 
considered known. t 

General r~~~rk~ conferring the character of the 
final equations 

With the profiles given by equations (24) and 
(25) the integrals which arise in the integral 
conditions for the momentum and energy 
equation can be evaluated in terms of the profile 
parameters and their derivatives. The details 
thereof are given in the appendix to this paper; it 
is perhaps of interest to discuss here the form 
and implications of the final equations. 

Symbolically, the final equations arising from 
the integral conditions can be written in matrix 
form as 

(2s) 

A11 Al2 -413 A14 

A21 A22 A23 A24 

A31 A32 A33 A34 

A41 A42 A43 A44 

, 
?e 
, 

a2 

6 

6 

Bl 

B2 
= (34) 

B3 

B4 

where ( )’ E d/df and where the At, and & 
coefficients are functions of the dependent 
variables qe, al, bl, bz and of the flow parameters 
,B, Gi, fw and gw and are given explicitly in the 
Appendix. Now for similar flows 8, 6, fw and 
gw must be constant and the column matrix 
I&I = 0. Indeed the values of ye, a2, bl and b2 

t It is implicitiy assumed here that no interaction 
between the external and boundary-layer flow is being 
considered; however, the extension to the interaction case 
can be carried out in terms of the usual one-wave flow, 

(31) which would relate 8, fi, dS*/dZ, and dVjd32. PeIP = hlhe, 
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making the column matrix zero yield the approxi- distribution of velocity and energy and an 
mate solution for the similar flow related to the initial thickness not corresponding to similarity.7 
specified values of the flow parameters. For Note that in this calculation the effect of varia- 
nonsimilar flows the column matrix will be tions in C and c through the boundary layer is 
non-zero and will provide the “forcing functions” taken into account in approaching the similar 
for the dependent variables. flow. 

It is now convenient to discuss the initial 
conditions which can be imposed; two situations 
arise. If the analysis is initiated at a finite 
S = $8 > 0, then arbitrary initial values of 
Te, a29 bl and bz can be imposed. If on the 
contrary, integration is to begin at S = 0, it is 
clear from equation (34) that finite derivatives 
& a;, etc., can prevail only if the column matrix 
l&l = 0, i.e. if a similar flow corresponding to 
the specified values /3(O), I, f&O) and g&O) 
exists. In this latter case arbitrary, initial values 
of T]~, al, etc., cannot be specified. If arbitrary 
distributions of the flow parameters are pre- 
scribed, then special care must be devoted to the 
accuracy of the integration in the neighborhood 
of s” = 0. However, in most problems of practi- 
cal interest #Y(O), @z’(O), f;(O) and g;(O) are zero 
so that 7:(O), a&O), etc., are also zero; then 
straightforward integration from the starting 
point S = 0 can be employed. 

Several further points are perhaps worth 
noting; equation (34) can be integrated by 
standard techniques, as for example, by the 
Kutta-Runge-Gill procedure, on modest size 
computers. With increasing values of j the 
effective transport parameters CO, m, CO,, and 
CO, m may be determined by numerical quadra- 
ture, e.g. by Simpson’s rule, from the values of 
the dependent variables at the end of the 
previous step. Finally, the program for solving 
nonsimilar problems, i.e. where either any one or 
all of the flow parameters are varying with S may 
be readily employed to find solutions to similar 
flows as follows: At an initial J = 4 > 0, 
assume for initial values of Q, a2, b, and 62 
estimates of the values thereof which are con- 
sidered to correspond to the similar flow in 
question. With j3, 6, .fw and gw constant inte,- 
grate equation ,(34) for increasing S until qe, 
a,, b, and b, become sensibly zero. The 
resulting values of ne, etc., are those for the 
similar flow. This procedure is physically 
equivalent to investigating the decay to a similar 
flow of a boundary layer which has an initial 

A detailed examination of equation (34) con- 
sidered with the values for the A~J coefficients 
given in the Appendix for the present velocity pro- 
file shows that the derivatives 77; and ai become 
infinite when a2 = &t6, 30, that each of these 
singular points correspond to simple poles, that 
they are independent of the variables ye, bi, bz 
and s‘, and finally that they arise from the velocity 
profile alone. The point a2 = 6 corresponds to 
separation so that its occurrence corresponds to 
physically acceptable behavior; the point a2 30 
appears to be of no practical significance. How- 
ever, there are nonsimilar flows of interest, e.g. 
the boundary layer on a blunt body in super- 
sonic flow with arbitrary gw or on a porous 
surface with arbitrary suction, wherein the 
solution satisfying the desired initial con- 
ditions leads a2 to approach -6. Such a solution 
cannot be continued beyond the value of d 
corresponding to a2 =- -6 except by artificial 
and unappealing means; in this case the method 
with the present velocity profiles must be con- 
sidered to break down. For the blunt body 
problem this occurred with the present profiles 
when gu; > O-3 at various points downstream of 
the stagnation point; for the boundary layer on 
a flat plate with uniform mass transfer, (~0)~~ 
-= constant, it is possible to integrate until 
f-(pr?)~ipeu,~,1(S/2); z 1.5. Thus for the analysis 
of these probtems according to the present 
method, other profiles must be chosen. It is 
noted that the restrictions cited above do not 
appear relevant to similar flows and thus the 
present analysis provides a means for obtaining 
approximate solutions in such cases. 

III. APPLICATIONS AND DISCUSSION OF 
RESULTS 

in this final section the results of several 
similar and nonsimilar applications of the 
present method and profiles are described and 
compared to more accurate calculations where 
available. 

t This same point of ;iew was applied recently in [18]- 
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Similar solution 
The basic solutions for similar flows are those 

presented by Cohen and Reshotko [2] which 
apply to C s 1. For a range of pressure gradient 
parameter, fl and wall enthalpy ratio, gW, many 
solutions have been obtained by the present 
analysis. Shown in Figs. 1 and 2 are some 

2,5 

FIG. 1. Similar solutions-Velocity profiles. 

Additional similar solutions corresponding to 
mass transfer with C s u G 1 have been com- 
pared with the results of Emmons and Leigh 
[19]; the agreement indicated on Figs. 1 and 2 
was again obtained. 

typical results where comparison was made In order to assess the treatment of variable 
with the profiles obtained in [2]; the good agree- transport properties afforded by the present 
ment is noted even for the case of adverse analysis several calculations of air injection at an 
pressure gradient. It might be remarked in axisymmetric stagnation point (1 = $, fi z 0) 
passing that when the Blasius solution is used as with C = g-0%2, (T = 0.7 were carried out. Com- 
an initial profile, approximately twenty steps in parison of a typical result with [20] wherein 
J were required for convergence, i.e. at this point numerical integration of the exact equations is 
the derivatives with respect to S were sensibly used is shown in Fig. 3; the satisfactory agree- 
zero. ment will be noted. 

PRESENT RESULTS 
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FIG. 2. Similar solutions-Enthalpy ratio. 
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FIG. 3. 
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FIG. 4. Distribution of shear function for various adverse pressure gradients. 
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FIG. 6. Heat transfer distribution on 

blunt nosed body. 
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It can be concluded on the basis of these surprising and the present analysis should be 
results that the present method provides a considered to provide another theoretical pre- 
ready means of obtaining approximate but diction. 
accurate solutions for similar flows with and As a final calculation the case of Mm = 4, 
without mass transfer and with and without (TWIT,) = 1.0 is considered; it is found that 
accurately described transport properties. separation is predicted to occur at 

Nonsimilar solutions 
(x/x,,) = 0.1065. 

Several representative nonsimilar flows have Thi,s should be compared to the range of values 
been treated by the present method. The first given by other analyses from O-173 to O-31 1 
problem considered here is a two-dimensional (cf. [22]). 
flow with an adverse pressure gradient such that The development of the boundary layer 

around an axisymmetric blunt body in high 
speed flow is considered next. The pressure 
distribution was given by Newtonian from which 
the pressure gradient parameter fi (S) could be 
computed. This resultant distribution is shown 

(35) in Fig. 5. The case corresponding to a cold wall, 
I.e. gW = 0 leads to no numerical difficulty while 
for gw > 0.30, the aforementioned singularity 
corresponding to a2 = -6.0 is encountered at a 
value of S depending on glu; the solution in these 
cases must be terminated and cannot be con- 
tinued to larger .f values. 

(u,/u,) = 1 - (x/x0) 

(x/x0) = I - [I - (S/So)]b 

ni -:-- ril,[ I - (S/!fo)] 

fl = (S/So) {[ 1 - @o][ 1 - fi] } -1 

gw = (I - riQ(Tw/Tm) 

ttim = [(y - 1)/2lM:{1 + KY 
~- 1):‘2]Mi, : -1 

where urn, x0, SO, ti&, are reference quantities and 
the ratio Tw/Tm is specified. The purpose of this 
study is the prediction of the separation point for 
various conditions of external Mach number and 
wall temperature ratio. 

For the case of incompressible flow, 

The heat-transfer distribution for gl/, m-m 0 
presented in terms of both qR@y~~4(psepse)-~ and 
(q/qo) where qo is the stagnation point value is 
shown in Figs. 6 and 7. For comparison pur- 
poses a one-moment method [23], the Lees 

Smith and Clutter [7] present the distribution of 
f:(s); a comparison with the present results is 
shown in Fig. 4 where the excellent agreement is 
noted. The results of many other investigations 
of the effects of Tim and Tw/Too are summarized 
in [21] and [22] in terms of the values of (~/SO) at 
separation. The present results for zero heat 
transfer and M, = 3 and M, = 10 are also 
shown in Fig. 4 along with the results given in 
[21]. For these latter cases it is clear that some 
disagreement on the separation value prevails; 
it should be pointed out, however, that the 
recent review of Morduchow [22] emphasizes the 
relatively wide disagreement among the various 
theoretical predictions of separation point for 
zero heat transfer and of the effect of heat 
transfer on separation point; in view of this 
situation the present disagreement should not be 

0.6 

ce 

\o 

0.2 LOCAL SIMILARITY 

EXPERIMENT [24] 

0 0.2 04 0.6 I-O 

I 

FIG. 7. Normalized heat-transfer distribution on blunt 
nosed body. 
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theory [3] and some available experimental re- 
sults from [24] are also shown; in each case qo is 
of course different. The excellent agreement is 
noted. There are also presented some results 
obtained by application of local similarity. These 
were computed according to the present method 
by using the local values of fi and fi and by 
determining the corresponding similar solution. 

0.6 

d 
\ 
a 0.4 

I.0 I.2 1.4 I.6 I.8 
X/i 

2'o 1. S. LEVY, Effect of large temperature changes (in- 

(0) SKIN FRICTION 
eluding viscous heating) upon laminar boundary 
layers with variable free-stream velocity, J. Aero. Sci. 
21,459474 (1954). 

2. C. B. COHEN and E. RESHOTKO, Similar solutions for 
the compressible laminar boundary with heat 
transfer and pressure gradient, NACA TR 1293 
(1956). 

3. L. LEES, Laminar heat transfer over blunt-nosed 
bodies at hypersonic flight speeds, Jet Propul. 26, 

e 
@ 0.6 

259-269, 274 (1956). 
4. J. A. FAY and F. R, RXDDELL, Theory of stagnation 

point heat transfer in dissociated air, J. Aero. Sci. 25, 
73-85, 121 (1958). 

5. W. D. HAYES and R. F. PROBSTEIN, Hypersonic Flow 
Theory, pp. 284-332. Academic Press, New York 

0.4 (1959). 
6. I. FL~GGE-LOTZ and F. G. BLO~TNER, Computation 

of the compressible faminar bound~y-layer flow 
including displacement thickness interaction using 

0.2 finite difference methods, Division of Engineering 
Mechanics, Stanford University, TR 131, AFOSR 

-- _-- HOWE [26] I 2206 (1962). 

I I I I 
7. A. M. 0. SMUIITH and D. W. CLUTTER, Solution of the 

0 
I.0 I.2 I.4 I.6 1.6 2.0 

incompressible laminar boundary-layer equations. 
AZAA J. 1. (8) 2062-2070 (1963). 

It is clear, as previously noted [5], that the 
approximations attendant with local similarity 
are not severe for the blunt body problem. 

As a final nonsimilar problem there is con- 
sidered the downstream effect of upstream 
transpiration cooling. A finite difference solu- 
tion for the flow over a flat plate was first dis- 
cussed by Howe [25] for the case of 

& = --(2)-a 

in the upstream region, a constant wall tempera- 
ture ratio (TW/lre) = l-16, and external Mach 
number Moo = 3. The similar solution for these 
conditions is obtained first and then assuming the 
computed values of Q, as, br, ba to prevail at the 
start of the impermeabIe region the downstream 
solution corresponding to fW = 0 is obtained. 

Skin friction and heat-transfer results are 
shown in Fig. 8 with comparison to reference 
25. The resultant cf/cfO and q/q0 distribution, 
where cfO and qo as computed from the similar 
sotution corresponding to fW = 0, seem to be 
fairly accurate. 
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In this appendix there will be summarized the integral conditions corresponding to m = 0, 1 in 
equations (5)-(12) and equations (15)-(23); the matrix that results therefrom [see equation (34)] 
when use is made of equations (31)-(33) is also presented. 

The condition corresponding to m = 0 can be written as 

$$,.Z1)= ~KfJ;l.-zI-_Bzr +; [fw+2sd%] (Al) 

2+t?ri)= ;$(g;),-z7- $[s”+2s$ (1 -8,) (42) 

Those corresponding to m = 1 are 

2s” co1 

-ii qe& 
?e [ 

d (‘7e 16) - d4; ($14) - 17: I,] = ~2 +&+z4-z6-flzs- +: 
[ 
&+&& (1-16) 

I 
(43) 

CllU - gw) + ??I CZl 
(Q Zs) - $ (7); Zs) - 7J”, Z;] = -_ -;;- -~~-~~~ + f9 + 18 - 16 - $ 

[ 
fw 

1 (1 - ZlO) 644) 

where the la are various integrals off,(q) and g(q) and after considerable labor can be shown to be 
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11 = If& (1 - f,> d+ = (37/315) + (2 m/945) - (@f/2268) 

12 = j (g -f;> d7? = (263/630) + (h/10) + @z/60) - [(l - g&2] + (71a;/3780) - (a;/2268) 
0 

13 = i fT j! j-T djj’ d;j = (49/200) - (7a2/600) + (a;/7200) 
0 0 

1 ;I 

r; SE f7 J J 
;;&i de’ d+j = [(- 103/10800) + (t&/7200)] $; - 1 f$; [& _ f3] 

e 
0 0 

I4 s s’ %j f; dij = (12413 1.5) - (29~3780)~~ + (~~/7~~) 
0 

15 zz ; ;i (g -St) d+j = (67/630) - [(l - g,)/7] -I- (41105) bl 
0 

+ (1/‘14O)b2 + (29~2~3780) - a;/7560 

16 z ifi d7j = (7/10) - (~2/6O) 

17 s ; fT (1 - g) d;i = (1 - gw) [(17,‘70) - (31/2520) a21 - 61[(79/1260) - (19/7560) u2] 
0 

- bz [(29/2520) - (a2/2520)] 

1s s 5 5 fq g dq = (13/30) - (~2~180) - (1 - g,) [(332/3465) - (281~831~) aa] 
0 

- bl [(-389,‘13860) + (23/27720) a21 - bz [(-17/3080) + (l/6930) as] 

19 ZE j g jr, d$’ d+ = (4115) - (~2~90) + (1 - gw) [(-295/5544) + (83~23760~ ~21 
0 0 

+ bl[(1093/69300) - (19/19800) az] + bz [(289/92400) - (43/237600) aa] 

1 n 

19 = g asq, J J -?‘- dij’ d%j = [( - l/90) + (1 - gw) (83/23760) - (19/l 9800) bl - (43/2376~) bz] 

0 0 
da2 1 dn, 

110 = J! g d+ = 1 - [(l - iid/ + (b1/10) + (bz/60) 
0 

After some manipulation the elements occurring in the matrix [equation (34)] can be shown to be 

All = zr 

A12 = r],[(2/945) - (u2/1134)] 

A13 = 0 

A14 = 0 
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AZI = 17 

AZ2 = ~e[(-31/2520)(1 - g,) -c (19/7560)bl + (1/2520)bz] 

A23 = -_r1,[(79/1260) - (19/7560)~2] 

A24 = -y,J(29/2520) - (a2/2520)] 

B2 = (q,/2s) [(C, b&w 77:) - 171 $ me $-- [(17/70) - (31/2520) a21 

- (l/2$ 
i 
fu, + 2s “dfJ (1 - gw) 

A31 = 1s - 14 - 13 

A32 7 -7~e[(61/151200)~2 - (41/75600)] 

A33 = 0 

A34 = 0 

B3 = (7d2J) (Cob;) + 13 + 14 - Is - fi 15 - (lhe) 
i 
fw + 2s ‘$ 

A41 = I6 - Z8 - Zg 

A42 = y,[-(127/18480)(1 - gw) + (31/17325)bl + (541/1663200)b2 

A43 = ~e[(-389/13860) + (23/2772O)a2] 

A44 = Q[( - 17/3080) + (1/6930)a2] 

B4 = (7,/2S) [(c~~(l - gw) + r-i? &}/T; + Ig + 18 - 161 + ye ‘if [(332/3465) - (281/83160)u2] 

- (1/2S) 
i 
fw + 2s y (1 - ho) 

R6sum&--Une methode integrale basee sur la technique des moments et specialement utile pour les 
Ccoulements laminaires compressibles est presentee. Les equations aux derivees partielles decrivant 
les ph&tomenes sont d’abord transformees a l’aide des variables de Levy et de Lees et converties 
ensuite en conditions integrales avec ~)m comme facteur de ponderation. On decrit une technique pour 
traiter la variation des proprietes de transport qui apparait explicitement lorsque m > 0. Les tqua- 
tions resultantes sont appliquees pour m = 0 et 1 avec les profils en polynomes du 4eme et du 5eme degre 
employ&s ordinairement pour la vitesse et l’enthalpie d’arret. On a insistt sur la classification nette des 
Ccoulements en similitude ou non, dans le meme cadre analytique. L’analyse est appliquee a une varieti 
d’ecoulements pour lesquels des rbultats plus p&is sont disponsibles et on trouve qu’elle fournit 
dans de nombreux cas des resultats satisfaisants. On considere done que la methode actuelle ameliore 

la methode inttgrale classique (m = 0) sans peine excessive. 

Zusammenfassung-Es wird ein Integralverfahren angegeben, welches auf der Technik der Augen- 
blickszustande basiert und fur kompressible, laminare Stromungen besonders niitzlich ist. Die zu 
Grunde liegenden partiellen Differentialgleichungen werden zuerst auf die Levy-Lees Variablen 
umgeformt und dann in eine integrierbare. Form mit nm als einem bestimmten Faktor gebracht. Fur 
die Handhabung der Anderungen der Transportgrossen, welche explizit fiir m > 0 auftreten, wird 
ein Verfahren angegeben. Die resultierenden Gleichungen werden fur m = 0, 1 mit denim allgemeinen 
gebrauchlichen durch Polynome vierten oder fiinften Grades beschriebenen Profilen fiir Ge- 
schwindigkeit und Staupunktsenthalpie angewendet. Die ausgeprlgte Klassifizierung von lhnlichen 
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und nichtahnlichen Striimungen innerhalb des gleichen analytischen Rahmens wird nachdriicklich 
betont. Die Analyse wird auf viele verschiedene Striimungen, fiir welche genauere Ergebnisse ver- 
fiigbar sind, angewandt und in den meisten Ftillen ergeben sich zufriedenstellende Resultate. Daher 
wird die vorliegende, leicht anzuwendende Methode als Verbesserung des iiblichen Integralverfahrens 

(m = 0) angesehen. 

AHHOT~I~S-~~BO~IJTCEI IfHTerpaJIbHbIti MeTOg MOMeHTOB, IIPHMeHIIMbIfi AJIfl ZIaMHHapHOrO 

TeYeHPIR CHtllMaeMOti ?RPl~HOCTH. CHaYaJIa @l@$epeHIWlaJIbHbIe ypaBHeHHR B qaCTHbIX IIPO- 

Il3BOfiHbIX IlpeO6pa3ylOTCH IE IIepeMeHHbIN J~eBIk&ICa, a 3aTeM CBOAHTCH 1E MHTerPanbHbIM 

YCJI~BE~RM c~eco~ p. OnncaHMeTo~yqeTan3MeHeHws xapaurepncrnunepeuoca,aMeromero 
MeCTO IIpH m > 0. nOJIyqeHHbIe ypaBHeHPlH IIpPlMeHlUOTCH I-c CJIysaM m = 0 IIpll 06bFIHOM 

3anaHLlH IlpO+W=I CKOPOCTIl II 3HTanbIIlZM TOPMOHFeHElH B BlQe IIOJIMHOMOB 4-OL% II 55Oii 
CTeIIeHII. nP&lBOALlTCH IUIaCCPl$HKa~IUI aBTOMOAeJIbHbIX PI HeaBTOMOAeJIbHbIX TeYeHHti B 

pahruax TOGI me reopau. 3T0~ MeTox npuMerinercn nnn auanuaa reqemri%, sari rtoropbrx 
IIMeIOTCfI 6OJIee TO'IHbIe pe3yJIbTaTb1, I1 OH AaeT BO MHOrHX CJIyYaRX y~OBneTBOpIITeJIbHbIe 

pe3ynhTaTbI. nO3TOMy ,?aHHbIir MeTOn HeCKOJIbHO yJIyYIIIaeT 06bI'lHbIti IIHTerI'a.?bHbIir MeTOg 

(m = 0) Bea Gonbrunx ycll.?Ilil. 


